首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   22篇
航空   30篇
航天技术   44篇
航天   11篇
  2023年   3篇
  2020年   1篇
  2019年   1篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   8篇
  2011年   3篇
  2010年   2篇
  2009年   8篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  1999年   1篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   10篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
排序方式: 共有85条查询结果,搜索用时 500 毫秒
1.
The whistler-mode chorus waves are one of the most important plasma waves in the Earth’s magnetosphere. Generally, the amplitude of whistler-mode chorus waves prefers to strengthen when the energetic fluxes of anisotropic electrons increase outside the plasmapause. This characteristic is commonly associated with the geomagnetic storms or substorms. However, the relationship between the solar wind dynamic pressure (Psw) and the long-time variation of chorus waves during the quiet period of the geomagnetic activity still needs more detailed investigations. In this paper, based on MMS observations, we present a chorus event just observed in the inner side of magnetopause without obvious geomagnetic storms or substroms. Interestingly, during this time interval, some Psw fluctuations were recorded. Both the amplitudes and frequencies of chorus waves changed as a response to the variation in Psw. It proved that the enhancement of Psw increases the energetic electrons fluxes, which provides free energies for the chorus amplification. Furthermore, the wave growth rates calculated using linear theory increases and the central frequency of the chorus waves shifts to a higher frequency when the Psw enhancement is greater, which are also consistent well with the observations. The results provide a direct evidence that the Psw play an important role in the long-time variation of whistler-mode chorus waves inside the magnetopause.  相似文献   
2.
采用标准试验发动机实测结果及理论计算,研究了HTPB/HMX推进剂比冲与发动机工作压强之间的关系.研究结果表明,在发动机相同的工作条件下,工作压强由5MPa提高到10MPa可使推进齐比冲净增102N.s/kg,发动机工作压强最好选取大于6MPa。这一结果为发动机设计提供了参考依据。  相似文献   
3.
含氧杂环丁烷粘合剂的先进固体推进剂   总被引:4,自引:1,他引:4  
综述了国内外氧杂环丁烷粘合剂研究的新进展。介绍了BAMO/AMMO固体推进剂的配方和性能。通过与常规推进剂的比较,分析并指出BAMO/AMMO推进剂的潜在优点。  相似文献   
4.
As Ulysses moved inward and southward from mid-1992 to early 1994 we noticed the occasional occurrence of inter-events, lasting about 10 days and falling between the recurrent events, observed at proton energies of 0.48–97 MeV, associated with Corotating Interaction Regions (CIR). These inter-events were present for several sequences of two or more solar rotations at intensity levels around 1% of those of the neighbouring main events. When we compared the Ulysses events with those measured on IMP-8 at 1 AU we saw that the inter-events appeared at Ulysses after the extended emission (>10 days) of large fluxes of solar protons of the same energy that lasted at least one solar rotation at 1 AU. The inter-events fell completely within the rarefaction regions (dv/dt<0) of the recurrent solar wind streams. The interplanetary magnetic field (IMF) lines in the rarefactions map back to the narrow range of longitudes at the Sun which mark the eastern edge of the source region of the high speed stream. Thus the inter-events are propagating at mid-latitudes to Ulysses along field lines free from stream-stream interactions. They are seen in the 0.39–1.28 MeV/nucleon He, which exhibit a faster decay, but almost never in the 38–53 keV electrons. We show that the inter-events are unlikely to be accelerated by reverse shocks associated with the CIRs and that they are more likely to be accelerated by sequences of solar events and transported along the IMF in the rarefactions of the solar wind streams.  相似文献   
5.
NEPE推进剂的热分解(Ⅰ)粘合剂的热分解   总被引:9,自引:0,他引:9       下载免费PDF全文
赵凤起  李上文  汪渊  潘清  袁潮  罗阳 《推进技术》2002,23(3):249-251,264
利用快速热裂解原位反应池(气体原位反应池)/快速扫描傅里叶变换红外光谱(RSFT-IR)和固体原位反应池/RSFT-IR联用装置,实时测定了NEPE推进剂粘合剂气相及凝聚相热裂解产物,研究获得了在线性升温条件下NEPE推进剂粘合剂的热分解特征,并讨论了其热分解机理。  相似文献   
6.
自组装单分子膜技术在推进剂中的应用   总被引:1,自引:1,他引:1       下载免费PDF全文
吕公连  张小平  杜磊  贾晓峰 《推进技术》2001,22(5):426-428,440
简要介绍了自组装单分子膜(SAMs)技术,研究了该技术在丁羟和聚醚推进剂中铝粉表面改性的应用。结果表明:设计合成的DX系列和DZ系列能有效提高推进剂的延伸率,对推进剂的其它性能无不良影响。并就该技术在含能材料中的应用前景作了展望。  相似文献   
7.
8.
To construct models for hazard prediction from radiation belt particles to satellite electronics, one should know temporal behavior of the particle fluxes. We analyzed 11-year variation in relativistic electron flux (E>2 MeV) at geosynchronous orbit using measurements made by GOES satellites during the 23rd sunspot cycle. As it is believed that electron flux enhancements are connected with the high-speed solar wind streams and ULF or/and VLF activity in the magnetosphere, we studied also solar cycle changes in rank order cross-correlation of the outer radiation belt electron flux with the solar wind speed and both interplanetary and on-ground wave intensity. Data from magnetometers and plasma sensors onboard the spacecraft ACE and WIND, as well as magnetic measurements at two mid-latitude diametrically opposite INTERMAGNET observatories were used. Results obtained show that average value of relativistic electron flux at the decay and minimum phases of solar activity is one order higher than the flux during maximum sunspot activity. Of all solar wind parameters, only solar wind speed variation has significant correlation with changes in relativistic electron flux, taking the lead over the latter by 2 days. Variations in ULF amplitude advance changes in electron flux by 3 days. Results of the above study may be of interest for model makers developing forecast algorithms.  相似文献   
9.
This brief report summarized the latest advances of the interplanetary physics research in China during the period of 2006—2007,made independently by Chinese space physicists and through international collaboration.The report covers all aspects of the interplanetary physics,including theoretical studies,numerical simulation and data analysis.  相似文献   
10.
The analysis of energetic particles and magnetic field measurements from the Ulysses spacecraft has shown that in a series of events, the energy density contained in the suprathermal tail particle distribution is comparable to or larger than that of the magnetic field, creating conditions of high-beta plasma. In this work we analyze periods of high-beta suprathermal plasma occurrences (βep > 1) in interplanetary space, using the ratio (βep) of the energetic particle (20 keV to ∼5 MeV) and magnetic field energy densities from measurements covering the entire Ulysses mission lifetime (1990–2009) in order to reveal new or to reconfirm some recently defined interesting characteristics. The main key-results of the work are summarized as follows: (i) we verify that high-beta events are detected within well identified regions corresponding mainly to the vicinity of shock surfaces and magnetic structures, and associated with energetic particle intensity enhancements due to (a) reacceleration at shock-fronts and (b) unusually large magnetic field depressions. (ii) We define three considerable features for the high-beta events, concentrated on the next points: (a) there is an appreciable solar-activity influence on the high-beta events, during the maximum and middle solar-cycle phase, (b) the annual peak magnitude and the number of occurrences of high events are well correlated with the sunspot number, (c) the high-beta suprathermal plasma events present a spatial distribution in heliographic latitudes (HL) up to ∼±80°, and a specific important concentration on the low (−25° ? HL < −6°, 6° < HL ? 25°) and median (−45° ? HL < −25°, 25° < HL ? 45°) latitudes. We also reconfirm by a statistical analysis the results of Marhavilas and Sarris (2011), that the high-beta suprathermal plasma (βep > 1) events are characterized by a very large parameter βep (up to 1732.5), a great total duration (406 days) and a large percentage of the Ulysses-mission lifetime (which is equal to 6.34% of the total duration with usable measurements, and 11.3% of the duration in presence of suprathermal particles events).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号